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Abstract

This paper presents the design of and test results for an algorithm solv-

ing constrained black box optimization problems globally using mainly

methods from data analysis. A particular focus is put on constraints: in

addition to bound constraints, we also handle black box inequality and

equality constraints. In particular, our algorithm is able to handle equality

constraints given in implicit form f(x) = 0 where f is a black box function

and x a vector of one or more variables. We achieve this by approximating

our black box functions by quadratic covariance models, using Gaussian

mixture models to locate holes to �ll with sample points and bounding

implicit equality constraints by quadratic approximations. Our algorithm

does not require gradients or gradient approximations, making it �t for

problems where function evaluations are expensive and no derivative in-

formation is available.
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1 Introduction

The goal of our paper is to present both an algorithm and a reference imple-
mentation to solve optimization problems where both the objective function
and the constraints may be black box functions, we do not have any gradient
or Hessian information for those black box functions and the functions are as-
sumed to be expensive to compute, thus the number of function evaluations
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shall be kept as small as possible, using covariance models as models for the
black box behavior, Pareto �lter techniques for estimating the position of the
optimum, the ratio-reject test and cubic regression to approximate the Pareto
front and extrapolate an optimum and Gaussian mixture models (GMMs) and
the Expectation-Maximization (EM) iteration for global search.

The implementation (available at http://www.tigen.org/kevin.kofler/
bbowda/) is licensed under the GNU General Public License, version 3 [15] or
later, with special exceptions allowing to link with the third-party optimizers
used.

Our implementation has also been integrated [17] into the Diana framework
[28], though this version is not contained in the public releases of Diana as of
January 2010.

In section 2, we present an algorithm applying methods from data analysis
to the solution of black box optimization problems. Using quadratic covariance
models for heuristic local function enclosure and Gaussian mixture models for
global density estimation, we construct an optimization algorithm which can
handle both objective functions and constraints without any gradient or Hes-
sian information. As we need not compute any di�erence quotients, the number
of required function evaluations is low, so the algorithm lends itself particularly
well to functions which are expensive to evaluate. Our algorithm is an incom-
plete global optimization algorithm: completeness cannot be achieved due to the
lack of global information and any asymptotical properties are of limited use
because we expect our optimizer to be used with expensive functions and thus
a low cap on the number of function evaluations. Therefore, we do not pursue
asymptotical completeness, but instead focus on density estimation aiming at
�lling the gaps in the search space in an optimal way given a �nite number of
points, and taking the points found by the local search into account.

We also present a way to handle black box implicit equality constraints:
our local covariance models are formulated in a way naturally accounting for
them; for our global density models, we solve linear programs to �nd heuris-
tic quadratic over- and underestimators for each implicit equality constraint,
which provide enclosures for the feasible set. As the enclosures cannot be made
rigorous due to the lack of global information, we adjust them for each newly
computed point, ensuring that all known points are always within the current
enclosures. As black box implicit equality constraints are still an active �eld of
research, this is a signi�cant result.

We document a working implementation of the above concepts, written in
the ISO C99 language [21, 22] and licensed under the GNU General Public
License, version 3 [15] or later, with special exceptions allowing to link with the
third-party optimizers used. The required third-party libraries are lp_solve

for linear programs and either DONLP2 or Ipopt, which requires MUMPS and
implementations of BLAS and LAPACK (we recommend ATLAS, which not only
performs better than the reference implementations, but also gave more accurate
results in our tests), for the non-linear surrogate and density models.

Finally, in section 3, we test our algorithm on a few low-dimensional example
programs from the COCONUT benchmark and perform some scalability tests.
We also compare our algorithm on a representative testcase with the existing
gradient-free solvers DDE [32], DMS-PSO [31] and HOPSPACK [27]. The other
gradient-free solvers available to us that work with nonlinear constraints were
entirely unable to solve this type of problem:
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• NOMAD [30] does not support implicit equality constraints. The model
only supports inequalities and there is no special handling for matched
pairs of inequalities.

• CONDOR [48, 49] does not support expensive or black-box constraints at
all (neither equalities nor inequalities). One of the assumptions quoted in
its manual is that the non-linear constraints are �cheap� to evaluate. In
addition, the evaluation function is expected to return gradients for the
constraints. Only the objective function can be an expensive black-box
function.

• The OpenOpt package [29] also does not provide a solver which handles im-
plicit black-box equality constraints. Its solvers either do not support any
constraints (ShorEllipsoid, scipy_fmin), support only bound constraints
(galileo), only linear constraints (pswarm) or only nonlinear inequalities
(de), or require gradients (ralg). In addition, the �de� solver is a di�erential
evolution implementation requiring an extremely high number of function
evaluations (the main loop does 150000000 iterations!), so its usefulness
even for black-box inequalities is limited.

A multitude of algorithms has been proposed to solve constrained global
optimization problems e�ciently, but most of them expect to have information
about gradients or at least to be able to approximate them using di�erence
quotients. Only a few algorithms have been successful at handling black box
constraints where no gradients are available and which are too expensive to
evaluate to consider di�erence quotients.

Simulated Annealing. Simulated annealing algorithms [24, 19, 47] employ
a heuristic based on the observation of the natural process of cristallization: a
cristalline structure is one which globally minimizes a certain potential. This
global minimum can be obtained by heating the material and slowly cooling it
down. However, no ready-made implementation dealing with general constraints
is publicly available.

Genetic Algorithms. Genetic algorithms [18, 14, 33] are also inspired by
natural processes: evolution and natural selection. They begin with a set of N
starting points, the population. At each step, pN (p ∈ ]0, 1[) points are retained
(selected), the others are killed. Points with smaller function value have a higher
probability of survival. The population is then �lled up by the reproduction of
the remaining points through a problem-dependent crossover procedure and/or
random mutations.

A multitude of variations, which can handle black box constraints, of this
�exible approach have been proposed at the CEC 2006 Special Session on Con-
strained Real-Parameter Optimization [26, 44].

DIRECT. Unlike the above Nature-inspired methods, the DIRECT (DIvid-
ing RECTangles) algorithm [23] is based on mathematical observations. It is a
complete algorithm using no global information. Therefore, it has to produce
a sequence of points which is dense in the feasible domain, as proven by Törn
and �ilinskas in [46]. DIRECT starts from a box (i.e. bound constraints) and
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constructs such a sequence by repeatedly splitting the box. A balance between
local and global search is given by a domination relation.

The original DIRECT algorithm only handles bound constraints. Extensions
have been proposed to handle black box constraints, e.g. in [6]. A convergence
analysis is provided in [9].

EGO. The EGO (E�cient Global Optimization) algorithm [20] works by ap-
proximating the black box functions by response surfaces using DACE (Design
and Analysis of Computer Experiments) stochastic process models [37]. An
estimate for the expected improvement is then computed using a branch and
bound approach. The approximation is re�ned and the process iterated until
the expected improvement is less than 1% of the current best function value.

The main limitation of the above algorithms is that they cannot handle
black box equality constraints. In fact, some of them already show their limita-
tions with inequality constraints other than bound constraints. Adding support
for general contraints to algorithms designed for no or only bound constraints
through tricks such as penalty functions or arti�cial function values generally
leads to much slower convergence, or even none at all. This paper develops an
algorithm designed to tackle this problem, supporting inequality constraints as
well as equality constraints in both explicit y = f(x) and implicit f(x) = 0
forms. In this paper, we only describe the version that worked best; for a
discussion of alternatives, see [25].

In Section 2, we will de�ne the exact model we operate on and describe
our algorithm. In Section 3, we will summarize the results obtained with our
implementation, both in terms of speed and quality, and compare them with
state-of-the-art algorithms on a representative testcase. Finally, Section 4 will
conclude the paper with an outlook on possible future improvements.

2 Model and Algorithm

This section proposes an algorithm to solve the above model. First, we give a
rough overview of the algorithm, then we detail each step. We start by describing
our method for starting point generation, then the local search technique, then
our global search method which looks for unexplored regions, and �nally we
present a way to deal with implicit equality constraints in the global search. We
will go into depth over the mathematical description of the algorithm, we will
however leave the details of the concrete implementation for the next section.
We will also motivate our decisions by mentioning some alternative approaches
we tried without success.
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2.1 Model

Our algorithm solves optimization problems of the form

min γ + cT
(
x
y

)
s.t. y = F1(x) (explicit equality constraints)

F2(x) = 0 (implicit equality constraints)
xl ≤ x ≤ xu

Fl ≤ y ≤ Fu

where x and y are variable vectors, γ is a constant, c, xl, xu, Fl, and Fu are
constant vectors (the bounds on x should be �nite and not too wide to allow for
global search, the bounds on y can be in�nite), inequalities are component-wise,
and

F (x) =
(
F1(x)
F2(x)

)
is assumed to be an expensive, black box function. By this we mean that
no closed-form algebraic expression for the function is known, no gradients are
available, and the bulk of the runtime of the algorithm on a real-world problem
is expected to be given by the function evaluations. These assumptions are
central to the design of the algorithm. We perform an incomplete global

optimization on this model; this means we attempt to �nd a global solution
for our model, but are unable to guarantee globality. In fact, we cannot even
guarantee always �nding a local optimum, due to the lack of gradients and
any sort of global information. Despite this lack of guarantees, the algorithm
performs well in practice, see Section 3.

The above form was chosen very carefully to avoid ine�ciencies that resulted
from earlier attempted formulations (see [25, Section 3.1]).

2.2 Overview of the Algorithm

The outline of our algorithm is the following:

1. If we do not have enough starting points, generate these.

2. As long as the maximum number of function evaluations is not reached,
we do after the kth function evaluation:

• for even k a local search:

(a) pick a �best� point using a Pareto �lter method (see [10, 11]),
(b) compute a regularized weighted nonlinear covariance model

around the point,
(c) optimize the model using a third-party local optimization

method;

• for odd k a global search:

(a) compute a Gaussian mixture model (see [54]) approximating the
point density using Expectation-Maximization Iteration (see [8]),

(b) optimize the model (minimize the density, in order to search
in unexplored regions) using a third-party local optimization
method.
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Then evaluate the black box function at the minimizer found.

3. If we have implicit equality constraints, try extrapolating a feasible point
by:

(a) picking the points which are Pareto-optimal (within the set of com-
puted points) for the simultaneous minimization of the objective f
and the constraint violation cv,

(b) throwing out those which are either already feasible to the desired
tolerance (cv too small) or too far from feasibility (cv too large),

(c) throwing out possible outliers using the method developed by Tax
and Duin in [45] (coined �ratio-reject� by [12]),

(d) using cubic regression to extrapolate cv to 0 from the remaining
points (which are assumed to be a good approximation for the Pareto
front, i.e. the set of theoretically Pareto-optimal points),

(e) computing the actual constraint violation to verify actual feasibility.

Then evaluate the black box function at the extrapolated point.

The global search ignores inequality constraints, i.e. the bounds Fl and Fu for
the explicit equality constraints y = F1(x), by design, because we only have
local information for the constraints, so we can't reliably tell which points are
feasible and which aren't, and in addition evaluating at infeasible points can give
us information important to �nd further feasible regions. (The explicit equality
constraints themselves are irrelevant because the global search only searches in
the x coordinates.) However, it has proven impractical to completely ignore the
implicit equality constraints F2(x) = 0 and blindly search everywhere, there-
fore we approximate them with quadratics, and actually optimize the GMM
twice: �rst without the equality constraints, then, using the result from this
optimization as a starting point, again with the approximations for the con-
straints. (Optimizing the model directly with the constraints from a generic
starting point has proven too hard for the local optimization methods, thus the
two-stage approach.) Only the result with the constraints is retained.

2.3 Starting Point Generation

To generate starting points, we use the following heuristic. Let N be the total
number of starting points to generate. If we already have at least N user-
provided starting points, we can skip this step. Otherwise, let m be the dimen-
sion of the points we want to generate, i.e. we want to construct x1, . . . , xN ∈
Rm. We construct a grid of (2N)m points x[1, . . . , 1], . . . , x[2N, . . . , 2N ], equidis-
tant along each dimension, such that x[i1, . . . , ij−1, 1, ij+1, . . . , im]j = xlj and
x[i1, . . . , ij−1, 2N, ij+1, . . . , im]j = xuj . (Note that this construction is purely
theoretical, in practice we will not compute the coordinates of these exponen-
tially many points!) We then proceed to �ll this grid semi-randomly, but taking
care not to generate more than one point with a given xj coordinate, and pre-
ferring points farther away from existing ones to closer points. This heuristic
is designed to prevent the formation of random clusters of starting points, with
other areas remaining unexplored.

The way we obtain such a �lling is:
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1. If we are given starting points by the user, we round these starting points
to the closest points on the grid (just for the purpose of the starting point
generation step; later in the algorithm, the actual user-provided points
will be used), and proceed as if these points had been generated by the
automated heuristic.

2. For each dimension j = 1, . . . ,m, we pick an index ij which has not been
used yet. Given that there are 2N total possibilities for ij and only N
starting points are to be generated, there are always at least N + 1 such
possibilities. Each unused ij is given the same probability. The resulting
point is the point x[i1, . . . , im] on the grid.

3. We repeat the above procedure for a total of 10 points, then retain the one
the farthest away from the existing points, i.e. with the largest euclidean
distance to the closest existing point. (If there are several points with the
same distance to existing points, any of them can be picked.) The other
9 points generated in this step are discarded.

4. We repeat the above two steps until we have N retained points.

It shall be noted that the rounded points from step 1 might not have been valid
for automated generation, in particular there might be several points with the
same jth index ij . However, this does not impact the algorithm in any way, and
therefore we do not attempt to �correct� user-provided starting points.

2.4 Local Search

Our local search starts at a previously-found point, constructs a local surrogate
model approximating the black box optimization problem around the point,
then optimizes that problem using a third-party local optimizer.

2.4.1 Choice of Best Point

The point to start the local search at is picked using a Pareto �lter method as
described in [10, 11]. In the presence of constraints, there is (in general) no
single best point, as one must take into account both the objective function
value and the constraint violation. We chose a �lter approach because penalty
approaches proved too sensitive to arbitrary problem-speci�c parameters.

As in the general Pareto �lter method, our best point is a point from the
set P of xj for which there is no xk with cT

(
xk
yk

)
≤ cT

(
xj
yj

)
and e(xk) < e(xj) or

cT
(
xk
yk

)
< cT

(
xj
yj

)
and e(xk) ≤ e(xj). For e(x), we did not pick the raw constraint

violation cv(x) = cv1(x) + ‖F2(x)‖1, but the weighted penalty term e(x) =
Ncv1(x) + κ(N)‖F2(x)‖1 (which was tuned for a previous penalty approach),
where

cv1(x) =
∑

xi<xli

(xli − xi)+
∑

xi>xui

(xi − xui)+
∑

yi<Fli

(Fli − yi)+
∑

yi>Fui

(yi − Fui) ,

κ(N) =


√

N
18 , N < 18

N
18 , 18 ≤ N < 77
N
√

N
158 , N ≥ 77
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and N is the number of already-evaluated points, though we do not expect this
to make a lot of di�erence in practice. We then pick a �best� point from P using
the following recipe:

• If the most recent point xr in P has never been used as the starting point
for a local search, we pick it with a probability of 1− 1

|P | .

• Otherwise, i.e. with a probability of 1
|P | if xr was never used and always

if it was, we pick a random point out of P (which can also be xr) with
equal probabilities (i.e. each point is picked with probability 1

|P | ).

Note that the set P is never empty by construction, therefore it is always possible
to pick such a point. The local search is then started from this point.

2.4.2 Surrogate Model

Let xbest be the point constructed above. We compute a weighted covariance
ellipsoid [53] around this point considering the data points

Xi =

xi

zi

yi


where xi are our iterates, yi =

(
y1i
y2i

)
= F (xi) =

(
F1(xi)
F2(xi)

)
and zi is the vector

formed by the columns of the upper half of the symmetric matrix xix
T
i :

zi = (xi11 xi12 xi22 xi13 xi23 xi33 . . . xi1m . . . ximm)T
,

where xijk = xijxik, i.e. the product of the jth and kth component of xi (i.e.
our model is partially quadratic), and the weights

wi =
1

‖xi − xbest‖62
√
p(xi)− pmin + 1

10

with p(x) = cT
(
x
y

)
+ e(x), the e(x) from above and pmin = mini p(xi), i.e. the

closer to xbest, the higher the weight (guaranteeing locality) and the smaller p(x)
(i.e. the better the point), the higher the weight (guaranteeing a better �t in the
area most likely to contain the optimum), but priority is given to locality (while
not discarding global information completely). The best point itself (which
would have in�nite weight) is ignored, it is instead used to center the covariance
model. The precise formula is the result of empirical experimentation.

In the presence of implicit equality constraints, there is an additional heuris-
tic: if we have enough points (we used a hardcoded lower limit of 28 points in
our implementation), we consider only the half with the lowest equality con-
straint violation ‖F2(x)‖1 and discard the other half. We force the mean of the
covariance model to Xbest (i.e. the Xi with xi = xbest), compute the weighted
covariance matrix CX of the �nite sequence (Xi)i with weights wi and build a
model

klow ≤ (X −Xbest)
T
C−1

X (X −Xbest) ≤ kup.

The inversion C−1
X is implemented in practice by computing a Cholesky factor-

ization CX = LLT (remember that CX is always positive semide�nite), which
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gives us an easy way to handle singular or near-singular CX by regularizing
the Cholesky factorization: we replace zeros or near-zeros in the diagonal of the
Cholesky factor, i.e. Lii ≈ 0, by εCXii with a small constant ε if CXii 6= 0, and 1
otherwise. More precisely, we regularize the diagonal elements with Lii ≤ εCXii

with the above ε, the non-strict inequality ensures the case Lii = 0 is always
taken into account too. In higher dimensions, we add an additional εCXii to all
Lii independently of the value of Lii because this proved bene�cial in our tests,
the models in higher dimensions tended to be too close to degeneracy without
this tweak; we do not do this in lower dimensions because our tests showed the
stronger regularization to be counterproductive in low dimensions. Let L be the
regularized Cholesky factor and M := L−TL−1. Then the model we consider is
klow ≤ k(X) ≤ kup with

k(X) = (X −Xbest)
T
M (X −Xbest) .

To put the directional covariance information into practical use, we pick
sensible values for the bounds klow and kup as follows: Let m be the dimension
of the iterates, i.e. xi ∈ Rm. Let N be the set formed by the 2m+1 iterates Xi

(out of those used to build the covariance model, so points discarded because of
an excessive equality constraint violation are not considered) closest to xbest. If
we don't have 2m+1 such iterates, let N be the set of all applicable iterates. In
case of points with equal distance, all points with the same distance from xbest

as the (2m+ 1)st closest point are added to N . The distance considered is the
Euclidean distance in the x component ‖xi − xbest‖2. We de�ne

klow = min
X∈N

k(X), kup = 2m−1 max
X∈N

k(X).

Finally, we obtain the surrogate problem

min cT
(
x
y1

)
s.t. klow ≤ k(X) ≤ kup

y2 = 0
z = (x11 x12 x22 x13 x23 x33 . . . x1m . . . xmm)T

xl ≤ x ≤ xu

Fl ≤ y ≤ Fu.

We eliminate the redundant variables y2 and add bounds zl and zu for z which
are the result of interval multiplications (without rounding control) on the
matching components of xl and xu and optimize the resulting problem

min cT
(
x
y1

)

s.t. klow ≤ k


x
z
y1
0

 ≤ kup

z = (x11 x12 x22 x13 x23 x33 . . . x1m . . . xmm)T

xl ≤ x ≤ xu

Fl ≤ y ≤ Fu

zl ≤ z ≤ zu
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using a local optimization method, with

Xbest =

xbest

zbest

ybest


as the starting point. We accept the optimum x̂ as our next iterate.

2.5 Global Search

In this section we will assume that there are no implicit equality constraints,
the next section will present a way to deal with those. The goal of our global
search is to ��ll the gaps� in the search space, to improve the likelihood that the
surrogate problem closely matches the original problem. Mathematically, this
means we want to �nd points in areas where the density of already existing points
is low. Therefore, our global search works by minimizing a density estimator.
The motivation for this is given by the observation that neglecting certain areas
can lead to missing the global optimum (whenever it happens to be located in
the neglected area), an empirical observation which has been formalized and
proven by Törn and �ilinskas in [46]. Unfortunately, their theoretical result is
not of immediate use to us: they proved that a global optimization algorithm
using only local information at the iterates can be complete only if the iterates lie
dense in the search space, but both denseness of the iterates and completeness of
the algorithm are asymptotical concepts, they only apply if we allow an in�nite
number of iterates. In practice however, the number of iterates is �nite, and in
our case, function evaluations (of the black box constraints) are assumed to be
expensive, and each new iterate implies a new function evaluation, which forces
us to stop after a relatively small number of iterates. Therefore, asymptotical
results are only of limited use, and thus we do not attempt to construct a
sequence which lies dense in the search space when an in�nite number of points
are constructed, because this will not be useful in practice anyway. Instead, we
take a more heuristic approach, using methods from data analysis to de�ne a
concept of density for a �nite number of points, which can then be optimized.

As the density estimator we want to minimize, we use a Gaussian mixture
model (GMM, see [54]), over the x coordinates only, as those are the only ones
we can control. Let N be the number of points we have already computed, then
we consider a sum of

⌊
N
4

⌋
Gaussians. As for the local search, we regularize the

covariance matrices of the Gaussians during the Cholesky factorization. In this
case, if the diagonal element Lii of the cholesky factor is smaller than a small
ε, we simply set Lii := ε. In our implementation, ε was taken to be the square
root of the machine epsilon DBL_EPSILON, but in principle any ε > 0 will do.
(In practice, however, a too small ε will cause numerical di�culties, a too large
ε will lose too much information.)

We compute the GMMs using the Expectation Maximization (EM) iteration
as described in [8]. As our starting points for the Gaussians, we take every 4th

iterate. We rotate through our iterates, so the same point is used only once
every 4 iterations. The Gaussians are implicitly regularized during the factor-
ization at each step, ensuring that the algorithm does not crash in a singular
con�guration. We stop the iteration after a �xed 10 steps. This stopping crite-
rion is arbitrary, but it is hard to give a better one, as the EM iteration tends
to become numerically unstable when running too many iterations (at least this
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was our observation on our test cases). In particular, in the case where the it-
eration converges to a singular model, more and more useful information is lost
to regularization with each iteration step. In addition, stopping after a �xed
number of steps also ensures reasonably bounded computation time.

As for the local search, we minimize this density estimator using a third-
party local optimizer. In this case, we optimize over the x coordinates only.
The optimization is unconstrained in the case without implicit equality con-
straints, because inequality constraints are ignored by design, both due to the
inability to determine the feasible region reliably in the absence of global in-
formation and because evaluating the constraint in infeasible areas can give us
useful information to approximate it within the feasible region, especially at the
boundary. As our starting point, we pick the center of the box. We use explic-
itly computed derivative information: The gradient of the multi-dimensional
Gaussian distribution

p(x|j) =
e−

(x−µ)TC−1(x−µ)
2

(2π)
N
2
√
det(C)

,

is given by

g(x|j) = −e
− (x−µ)TC−1(x−µ)

2 C−1 (x− µ)

(2π)
N
2
√
det(C)

= −p(x|j)C−1 (x− µ)

and the Hessian by

H(x|j) = −p(x|j)C−1 − g(x|j)
(
C−1 (x− µ)

)T
= −p(x|j)C−1 + p(x|j)C−1 (x− µ)

(
C−1 (x− µ)

)T
= p(x|j)

(
C−1 (x− µ)

(
C−1 (x− µ)

)T − C−1
)
.

As for the local search, we accept the optimum x̂ as our next iterate.
The EM procedure gives both the clusters and the density estimator at

the same time and the resulting GMM satis�es a provable optimality criterion
(maximum expectation) at the �xed point.

2.6 Implicit Equality Constraints

A very hard problem in black box optimization is how to handle implicit equality
constraints, i.e. our F2(x) = 0, in an e�cient way, the (ideal) goal being not
to blow up the search space more than if the equality constraint was explicit.
For our local search, this goal was easily reached by substituting y2 = 0 in
the resulting surrogate problem, which eliminates the variables y2 created by
the implicit constraints completely. When doing global search, however, the
implicit equality constraints are a much more serious problem, and we can no
longer reach our goal by a simple substitution. In fact, we cannot reach it fully at
all, we can only approximate it. However, we have seen in our experiments that
it is still essential to do this, as without this treatment, all the global search
tends to be wasted on infeasible areas. Special handling of implicit equality
constraints helps a lot with this.

During global search, we do not want to have to search in variables which
are determined by constraints. This is because the goal of global search is
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to �ll the gaps in the search space we can control. Explicit constraints make
this easy: we just search in the space spanned by the independent variables and
evaluate at the resulting point to get the values of the dependent variables. With
implicit constraints, however, we cannot simply do this, because a relation like
F (x, y) = 0 doesn't give us any information on what y values, if any, are valid
for a given x, especially in our black box algorithm where we do not have any
idea about what F looks like. The only assumption we can reasonably make
is that each implicit equality constraint corresponds to a hypersurface (i.e. a
submanifold of dimension one less than the dimension of the containing space)
or a union of hypersurfaces in our space of independent variables x. While there
are counterexamples even for that (just consider the obvious case F ≡ 0 which
results in the trivial constraint 0 = 0, or the case F ≡ 1 which results in the
always infeasible 1 = 0), most practical implicit equality constraints form such
hypersurfaces. Therefore, our heuristics are tuned for the common case. (This is
in contrast to implicit inequality constraints which do not reduce the dimension
of the search space except in degenerate cases.) In this case, the ideal goal
would be to eliminate one dimension from the search space for each equality
constraint. Given that this is not possible for the reasons discussed above, our
algorithm aims instead at making the search space as narrow as possible in
the excess dimension. This is done by introducing quadratic constraints in the
global search which attempt to enclose the correct equality constraints from
both directions. Since we cannot guarantee that the enclosures will always be
rigorous (due to the lack of global information), we rectify our enclosures over
time, such that all already computed points are always within the enclosures for
the constraints (ignoring rounding errors as everywhere else in the algorithm).
At the same time, we generate additional enclosures with every new point we
retain, whether it results from a local or a global search (but not for the starting
points).

The general approach to obtain such enclosures was suggested by Stefan
Vigerske, who is using it successfully in his LaGO optimizer [35, 36]. However,
we adapted his approach for our problem. At each new point, we generate
two quadratic estimates for each implicit equality constraint, one from above
and one from below. (Unlike LaGO, we do not sample new points for the sole
purpose of improving the constraint estimates, but instead compute the optimal
enclosures from the points we get during the main algorithm. The worst which
can happen from lacking constraint information is to land at an infeasible point,
which will naturally help improving our enclosures. Function evaluations being
expensive, we cannot a�ord doing additional sampling at the expense of local
search.) Consider the implicit equality constraint F2;l(x) = 0. We start by
computing enclosures

F (x) =
∑
i,j

aijxixj +
∑

i

bixi + c

and
F (x) =

∑
i,j

aijxixj +
∑

i

bixi + c
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which are the best in the sense of the linear programs

max
∑

k F (xk)
s.t. ∀k : F (xk) ≤ F2;l(xk)

F (xnew) = F2;l(xnew)

resp.
min

∑
k F (xk)

s.t. ∀k : F (xk) ≥ F2;l(xk)
F (xnew) = F2;l(xnew)

or in coordinates:

max
∑

i,j (
∑

k xkixkj) aij +
∑

i (
∑

k xki) bi +Nc

s.t. ∀k :
∑

i,j xkixkjaij +
∑

i xkibi + c ≤ F2;l(xk)∑
i,j xnew;ixnew;jaij +

∑
i xnew;ibi + c = F2;l(xnew)

resp.
min

∑
i,j (
∑

k xkixkj) aij +
∑

i (
∑

k xki) bi +Nc

s.t. ∀k :
∑

i,j xkixkjaij +
∑

i xkibi + c ≥ F2;l(xk)∑
i,j xnew;ixnew;jaij +

∑
i xnew;ibi + c = F2;l(xnew)

where N is the number of points, i.e. N =
∑

k 1. For the �rst enclosure (using
the data from the starting points), the last constraint, which requires an exact �t
at the new point, is omitted. The linear programs are solved using the lp_solve
library. Unlike LaGO, which proceeds to computing convex enclosures out of
these, we work with the (in general nonconvex) quadratic enclosures directly.

We then apply the following relaxation: let's assume the enclosure F (x) ≤
F (x) ≤ F (x) holds for all x. Then the pair of constraints F (x) ≥ 0 and F (x) ≤ 0
forms a relaxation for the equality constraint F (x) = 0. We apply this to our
constraint F2;l(x) = 0, replacing it with the two constraints F (x) ≥ −τ and
F (x) ≤ τ , where τ ≥ 0 is a small heuristic tolerance compensating for the fact
that our enclosures may be o� due to lack of information. We add these two
constraints to our global search minimization problem, which is then solved in
two steps (as doing it in one step did not achieve satisfying convergence with
the two supported local optimizers): we �rst run the global search with only
bound constraints, starting at the center of the box, then we use this point as
the starting point for the fully constrained global search.

We never throw away enclosures, instead we accumulate more and more of
them as the algorithm proceeds. We do, however, correct them if we �nd them
to be wrong, i.e. if we �nd a new point x′ with F2;l(x′) < F (x′) or F2;l(x′) >
F (x′). This is simply done by adjusting the constant term c resp. c by the
amount needed to make the new point �t, i.e. to obtain F2;l(x′) = F (x′) resp.
F2;l(x′) = F (x′).

2.7 Implementation

Our implementation of the algorithm we have just described can be obtained
at http://www.tigen.org/kevin.kofler/bbowda/. It is implemented in the
ISO C99 language [21, 22] and licensed under the GNU General Public License,
version 3 [15] or later, with special exceptions allowing to link with the third-
party optimizers used: Peter Spellucci's DONLP2 [41, 42, 43], the Ipopt [51, 52]
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optimizer from the COIN project and the lp_solve [5] implementation of the
revised simplex method [7]. Ipopt needs a solver for sparse symmetric linear
systems of equations. In our tests, we used MUMPS [1, 2, 3, 4] in sequential
mode. The third-party libraries were slightly patched by us, see [25, Section 5.1]
for details. A full description of our implementation, including documentation
of the �les describing the input model, which have to be �lled in by the user, is
provided in [25, Chapter 4].

3 Results

In this section, we discuss the performance of the algorithm, both in terms of
speed and quality. We �rst describe the approach used to obtain the results, then
present a summary of the results themselves. More detailed documentation is in
[25, Chapter 5]. Finally, we discuss the performance of existing state-of-the-art
algorithms on a representative example.

3.1 Testing Methods

We tested our implementation on a few test cases from the libraries 1 and 2 of the
COCONUT Benchmark [39, 40]. These libraries contain common test problems
converted to COCONUT's internal DAG representation, which can be converted
to C code using a small modi�cation (described in [25, Section 5.1]) of the APIs
from the COCONUT Environment [38, 34]. Library 1 contains problems taken
from GLOBALLib [16] and the Handbook of Test Problems in Local and Global
Optimization [13]. Library 2 corresponds to Vanderbei's CUTE Test Collection
[50].

It is important to note that these test cases involve cheap, analytical func-
tions, not expensive black box functions as in the real-world problems our algo-
rithm is targeted at. This implies that all time measurements essentially only
measure the time spent within the algorithm. Therefore, the number of func-
tion evaluations is an important metric which must be taken into account when
estimating the time spent on real-world problems.

One problem we encountered with this test set is that many variables in the
test problems lack one or both bounds. (In some cases, the variables are truly
unbounded, in others, bounds easily follow from the constraints.) Our algo-
rithm, however, can only work with �nite bounds. Moreover, it is important for
the bounds for the x variables to be as close together as possible, as our algo-
rithm performs better when more of the x within the bounds are also within the
bounds for y = F1(x). This is mainly due to the fact that, by design, our global
search only handles implicit equality constraints specially, not inequality con-
straints (i.e. the bounds on the variables given by explicit equality constraints).
The reasons for this tradeo� are explained in sections 2.2 and 2.6. Therefore,
arti�cial large bounds like [−1000, 1000] are not usable for most problems, at
least for x. (The bounds for y are less sensitive because they are only used
in the local surrogate models where locality is ensured by the covariance ellip-
soid, so those bounds being larger than necessary is not a big deal.) Thus, we
set reasonable bounds for the variables by hand where they are missing. (Any
added bounds will be presented together with the results below.) The number
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of function values needed for convergence was determined by inspection of the
intermediate results; this is appropriate for expensive function evaluations.

In addition, we ran some simple scalability tests: we tested a trivial quadratic
objective function and the multidimensional Rosenbrock function (the precise
expressions and bounds will be given in the next section), using both the explicit
and the implicit formulation for the equality constraints, and checked up to what
dimension convergence can be achieved, and at what speed.

We report results obtained both with DONLP2 and with Ipopt (using
MUMPS as the linear solver) so the results with the di�erent NLP optimizers
can be compared, and also to reduce the in�uence of the performance of the
third-party optimizers on our overall results.

The tests were run on a Pentium 4 Northwood 2.6 GHz running a fully-
updated Fedora 7.

3.2 Results

In this section, we present the results obtained from the tests described above.
In all our tests, we did not provide starting values by hand, relying instead on
our automated starting point generation algorithm described in section 2.3.

In some cases, objective function values below the true minimum are re-
turned. This can be explained by the fact that our algorithm can return points
which are only feasible up to a given tolerance. It would be unrealistic to ex-
pect complete feasibility out of a black box algorithm, especially in the presence
of implicit equality constraints. Where not otherwise speci�ed, the feasibility
tolerance, i.e. the maximum allowed constraint violation, was set to 0.001.

3.2.1 COCONUT Benchmark Library 1

We ran our optimizer on two examples from library 1 of the COCONUT Bench-
mark: circle and dispatch.

circle The best known result for the circle (Circle Enclosing Points) prob-
lem, found by MINOS, is:
4.5742477881 at [5.3880763381, 6.3990975587, 4.5742477881]

As there were no usable bounds for the three x variables, we provided the
bounds [0, 10] for all three. With DONLP2 as the local optimizer, our algorithm
found the solution:
4.626279 at x=[5.069064,6.109449,4.626279]

after 150 function evaluations and 17.430 seconds. (Increasing the number of
allowed function evaluations did not lead to a better solution.) With Ipopt as
the local optimizer, our algorithm found the solution:
4.574240 at x=[5.388075,6.399094,4.574240]

after 50 function evaluations and 52.046 seconds.

dispatch The dispatch (Economic Load Dispatch Including Transmission

Losses) problem originates from power generation. The best known solution,
found by MINOS, is:
3155.2879268581 at [50.0000000000, 75.4858804799, 93.2622541695,

8.7481346494]
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The model does not provide bounds for x4 and the objective function nor an
upper bound for the inequality constraint. Therefore we computed the bounds
from those for the �rst three x variables and rounded to obtain the following
bounds: x4 ∈ [−200, 320], the objective y1 ∈ [−1000, 7000] and the inequality
constraint y2 ∈ [210, 730] (y2 ≥ 210 was the original inequality constraint). The
objective function includes a constant term 653.1000000000000227374 which
cannot be represented by our implementation, this term has to be added to the
optimum function value provided by our optimizer. With DONLP2 as the local
optimizer, our algorithm found the solution:
2502.184619 at x=[50.000000,76.060592,92.712255,8.773665]

(i.e. an actual optimum of 3155.284619) after 250 function evaluations and
51.357 seconds. With Ipopt as the local optimizer, our algorithm found the
solution:
2502.173543 at x=[50.000000,75.527606,93.221193,8.749709]

(i.e. an actual optimum of 3155.273543) after 251 function evaluations (250 plus
one extrapolated point) and 1 minute 10.768 seconds.

3.2.2 COCONUT Benchmark Library 2

We ran our optimizer on three examples from library 2 of the COCONUT
Benchmark: aljazzaf, twobars and maratos.

aljazzaf The best known solution for the Aljazzaf example problem, found by
OQNLP, is:
75.0049000369 at [0.0000000000, 0.9999999940, 0.9999990004]

We used the bounds [−1, 1] for the x variables and [0, 500] for y. With
DONLP2 as the local optimizer, our algorithm found the solution:
74.962735 at x=[0.000209,0.999946,0.999368]

after 201 function evaluations (200 plus one extrapolated point) and 2 min-
utes 1.482 seconds. With Ipopt as the local optimizer, our algorithm failed
to �nd a point satisfying the feasibility tolerance. After 250 function evalua-
tions and 19 minutes 32.282 seconds, extrapolation produced the 251st point
[-0.000108,0.999998,1.000075] which still fails to satisfy the tolerance.

twobars The twobars (Structural analysis of the simplest two bar scheme)
problem originates from mechanics. The best known solution, found by DONLP2,
is:
1.50865 at [1.41163, 0.377072]

This model already provides usable bounds for the x variables, for y we
kept the default [−1000, 1000] from our converter. With DONLP2 as the local
optimizer, our algorithm found the solution:
1.557142 at x=[1.497032,0.286213]

after 150 function evaluations and 8.603 seconds. (Increasing the number of
allowed function evaluations did not lead to a better solution.) With Ipopt as
the local optimizer, our algorithm found the solution:
1.508620 at x=[1.411632,0.377006]

after 100 function evaluations and 55.188 seconds.

maratos The maratos problem is hard to solve correctly because the variables
in the optimal solution have very di�erent scales. The best known solution,
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found by DONLP2, is:
-0.999999 at [1, -1.72277e-06]

For this problem, we used the bounds [−2, 2] for all x and y variables. We
also decreased our feasibility tolerance to 10−5. (We tried decreasing it further
to 10−6, but our optimizer failed to �nd a feasible point with that low a toler-
ance.) In addition, we modi�ed the �nal output in main.c to print the second x
coordinate for the retained optimum in exponential (%lg) format. With DONLP2

as the local optimizer, we obtained:
-1.000000 at x=[1.000001,-5.2591e-05]

after 100 function evaluations and 20.791 seconds. With Ipopt as the local op-
timizer, we obtained:
-1.000000 at x=[1.000001,-8.36745e-05]

after 100 function evaluations and 2 minutes 13.876 seconds.

3.2.3 Scalability Tests

The results of the scalability tests will be presented in partly tabular, partly
graphical form: d is the dimension of the problem, which we vary to test scal-
ability. For every d, we chart the number of function evaluations, which we
increased in steps of 50 until convergence was obtained, and the computation
time in seconds, and we list the obtained result in a table. For conciseness rea-
sons, we only list the objective function values, the corresponding x points can
be found in [25, Section 5.2.3].

Quadratic Objective as Explicit Equality Constraint. We used the
trivial quadratic objective

∑
i

(
xi −

(√
2− 1

))2
and used the usual

variable substitution to turn it into the explicit equality constraint
y = F1(x) =

∑
i

(
xi −

(√
2− 1

))2
and the linear objective function y. We

chose the bound constraints [−1, 1] on xi and [−d, 2d], where d is the
dimension of the vector x, on y. (The bounds on y are not a true constraint
because xi ∈ [−1, 1] implies y ∈ [0, 2d]). We also tried the bounds [−d, d] for y.

With the bounds [−d, 2d] and DONLP2, we obtained the following results:
d result
1 0.000000
2 0.000000
3 0.000000
4 0.000000
5 0.000000
6 0.000000
7 0.000006
8 0.000004
9 0.000024
10 0.002135
11 0.005927
12 0.005325
15 0.010697

 0.1

 1

 10

 100

 1000

 0  2  4  6  8  10  12  14  16

dimension

function evaluations
seconds

With the bounds [−d, 2d] and Ipopt, we obtained the following results:

17



d result
1 0.000000
2 0.000000
3 0.000000
4 0.000000
5 0.000000
6 0.001864
7 0.000082
8 0.090652
9 0.005280
10 0.008180
11 0.027408

 10

 100

 1000

 10000

 0  2  4  6  8  10  12

dimension

function evaluations
seconds

With the bounds [−d, d] and DONLP2, we obtained the following results:
d result
1 0.000000
2 0.000000
3 0.000000
4 0.000000
5 0.000000
6 0.000000
7 0.000003
8 0.000005
9 0.000033
10 0.000014
11 0.000120
12 0.001256
15 0.000030

 0.1

 1

 10

 100

 1000

 0  2  4  6  8  10  12  14  16

dimension

function evaluations
seconds

With the bounds [−d, d] and Ipopt, we obtained the following results:

d result
1 0.000000
2 0.000000
3 0.000000
4 0.000000
5 0.000101
6 0.039120
7 0.008043
8 0.002461
9 0.000392
10 0.004097
11 0.034805

 10

 100

 1000

 10000

 0  2  4  6  8  10  12

dimension

function evaluations
seconds

For d = 6, increasing the number of function evaluations from 100 to 150 did
not improve the result either.

Quadratic Objective as Implicit Equality Constraint. In order to test
equality constraints in implicit f(x) = 0 form, we rewrote the above problem
by formulating the objective as an implicit rather than an explicit equality
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constraint:
d−1∑
i=1

(
xi −

(√
2− 1

))2

− xd = 0.

To get these examples to converge in a timely manner for dimensions 7 and
higher, a few tweaks were needed. First of all, we had to disable treatment of
implicit equality constraints in the global search (see section 2.6) for dimen-
sion 7 and higher, because the LPs needed to approximate the implicit equality
constraint for the global search took too long to compute: without this op-
tion, solving d = 7 with DONLP2 appeared to converge, but took over 3 hours!
lp_solve also ran into numerical problems in higher dimensions, which means
most of that time was wasted without �nding actual enclosures for our con-
straint. And secondly, we had to increase the feasibility tolerance tol from the
default .001 in higher dimensions because the tolerance could not be reached,
possibly partly due to the global search not being able to take the constraint
into account. With DONLP2, we obtained the following results:

d tol result
2 .001 −0.000608
3 .001 −0.000804
4 .001 0.000008
5 .001 −0.000984
6 .001 0.007643
7 .01 0.000680
8 .01 −0.001772
9 .1 −0.034728
10 .1 −0.039629
11 .5 −0.046004  0.1

 1

 10

 100

 1000

 2  3  4  5  6  7  8  9  10  11

dimension

function evaluations
seconds

The reduction in computation time between dimensions 6 and 7 is due to the
fact that we disabled the LPs for the enclosure of the implicit equality constraint
in the global search for dimension 7 and higher, otherwise the computation time
would have increased signi�cantly instead.

With Ipopt, we obtained the following results:

d tol result
2 .001 −0.000629
3 .001 −0.000781
4 .001 −0.000599
5 .001 0.000139
6 .001 −0.000747
7 .1 −0.098857
8 .5 −0.050436

 10

 100

 1000

 2  3  4  5  6  7  8

dimension

function evaluations
seconds
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Rosenbrock Function as Explicit Equality Constraint. For this test,
we used the multidimensional Rosenbrock function, formulated as an explicit
equality constraint

y =
d−1∑
i=1

(
(1− xi)

2 + 100
(
xi+1 − x2

i

)2)
,

with the bound constraints [−1, 2] on xi and [−1000, 2700] on y.
With DONLP2, we obtained the following results:

d result
2 0.001435
3 0.011359
4 0.008234
5 0.046058
6 0.020165
7 0.053847

 1

 10

 100

 1000

 2  3  4  5  6  7

dimension

function evaluations
seconds

With Ipopt, we could not obtain convergence even for d = 2:
d function evaluations result time (seconds)
2 200 0.135674 367.647

Higher values for the number of function evaluations also failed to improve the
solution.

Rosenbrock Function as Implicit Equality Constraint. The last, and
hardest, scalability test, was the multidimensional Rosenbrock function written
as an implicit equality constraint

d−2∑
i=1

(
(1− xi)

2 + 100
(
xi+1 − x2

i

)2)− xd = 0

with the bound constraints [−1, 2] on x1, . . . , xd−1 and [−1, 1] on xd. In this
example, our primary measurement target was not so much speed, but whether
convergence can be obtained at all.

With DONLP2, we obtained the following results:
d function evaluations result time (seconds)
3 100 0.018488 4.896
3 200 0.000040 18.634
4 does not converge
With Ipopt, we could not obtain convergence even for d = 3.

3.2.4 Graphical Representation

The following �gure shows the points evaluated for the original
2-dimensional Rosenbrock function expressed as an explicit equality
constraint using DONLP2 as the local optimizer. The circles represent the
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starting points, the X-es the points found by the global search and
the pluses connected by a line the points found by the local search.
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3.3 Comparison

Finally, we evaluated existing publicly available solvers for a comparison. As
our testcase, we considered the (2-dimensional) Rosenbrock function as an im-
plicit equality constraint as it is representative of the hardest problem type our
algorithm can solve.

As explained in the introduction, we found that many of the state-of-the-
art gradient-free solvers (NOMAD [30], CONDOR [48, 49], the OpenOpt [29]
solvers) were entirely unable to solve this type of problem, leaving us with just
a small choice of candidates for a comparison. We tried three solvers on our
testcase, two of which follow evolutionary approaches, the third one a Generat-
ing Set Search (GSS) strategy. As representatives of evolutionary algorithms,
we picked two codes from the top 5 at the CEC-06 Special Session on Con-
strained Real-Parameter Optimization [44]: DMS-PSO [31] by J.J. Liang and
P.N. Suganthan, which has achieved rank 2, and the DDE code [32] by Efrén
Mezura-Montes, a derivative of which has achieved rank 4. (The codes for ranks
1 and 3 appear not to be publicly available.)

• The DDE code [32] by Efrén Mezura-Montes is an implementation of di-
versity di�erential evolution. We found it able to solve the Rosenbrock
function as an implicit equality constraint, even the multidimensional test
case with 8 variables (7-dimensional Rosenbrock function), but at the
expense of a huge number of function evaluations. By default, the algo-
rithm always does exactly 225090 function evaluations. While this can be
tuned by reducing the number of generations or the number of individuals
per generation, we found that even on the 3-dimensional case, i.e. the
standard 2-dimensional Rosenbrock function, the algorithm was no longer
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able to achieve convergence with any settings which signi�cantly reduce
the number of function evaluations. In contrast, our algorithm converged
to a near-optimal point with only 100 function evaluations and achieved
a precision of 4 ·10−5 in only 200 function evaluations, i.e. a factor of over
1000 fewer.

• DMS-PSO (Dynamic Multi-Swarm Particle Swarm Optimizer) [31] by J.J.
Liang and P.N. Suganthan is another evolutionary approach. By default,
the algorithm always does exactly 500000 function evaluations. We found
that the number of function evaluations required to achieve convergence
varied signi�cantly from test run to test run due to strong nondeterministic
behavior, but was always above 100000. For reliable convergence, we found
a number of function evaluations on the order of the default 500000 to be
required, i.e. a factor of 2500 more than with our algorithm. From these
two results, we conclude that evolutionary approaches are powerful, but
not of practical use for functions which are really expensive to evaluate.

• HOPSPACK [27] is a framework for derivative-free optimization which
ships with an implementation of the Generating Set Search (GSS) algo-
rithm. It theoretically supports implicit black-box equality constraints.
Unfortunately, it gets stuck at the non-optimal point (.8112, .6756) for the
Rosenbrock function as an implicit equality constraint (the value found
for the third variable is .03468 which is within the feasibility tolerance
of .001 with a constraint violation of 9.760 · 10−4, the exact value of the
Rosenbrock function at that point is .03567, the optimum is 0 at (1, 1)),
giving up and claiming convergence after 1708 function evaluations.

We conclude that our algorithm is a big improvement over the state of the
art for the case of implicit black-box equality constraints that are expensive to
evaluate.

4 Conclusion

We tested our algorithm on a few low-dimensional example programs from the
COCONUT benchmark and performed some scalability tests. We obtained sat-
isfying results on the problems we tested: on the �ve low-dimensional problems
from the COCONUT benchmark we tested, convergence was obtained in all
cases, though we were unable to solve the Aljazzaf and Maratos examples to
full precision. The algorithm scales up to a dimension of around 15 for the simple
quadratic objective. It is also able to optimize the multidimensional Rosenbrock
function up to dimension 7. The problems with implicit equality constraints did
not scale as well, however we were able to optimize the 2-dimensional Rosen-
brock function as a 3-dimensional implicit equation to a very high precision.
We observed a strong dependence of the results on the local optimizer used:
for some test cases, the best result was obtained with DONLP2, for others with
Ipopt; the result with the other optimizer was often signi�cantly worse.

All in all, we found the results to be competitive, at least for low enough
dimensions. Our algorithm found the optimum up to the desired tolerance (with
at least one of the two local optimizers we tried for the surrogate models) in all
the testcases we tried up to a dimension of 7 to 15 (depending on the problem)
for explicit y = f(x) formulations and 3 to 11 for implicit f(x) = 0 ones.
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While we were successful at proving the concept and obtained some very
promising results, there are several potential improvements which can be the
subject of future research.

As can be seen in the graphical representation, our global search produces
many points on the border of the box being searched and few points in the
interior. Fine-tuning the global search to produce more interior points is likely
to improve global convergence.

Another possible improvement may be obtained for the stopping criterion:
currently, our algorithm always evaluates exactly the maximum number of
points, it is unable to verify whether convergence has already occurred or not.

Implicit equality constraints in higher dimensions are another place where
there is de�nitely room for improvement. Most, if not all, algorithms currently
on the market fail to handle black box implicit equality constraints, so our
algorithm is pioneering this domain. In the lowest dimensions, our algorithm
handles such constraints very well, but in medium to high dimensions (starting
at around 5 to 7), we ran into both numerical and speed-related di�culties with
our linear programs.

The extrapolation technique used to obtain feasible points with good objec-
tive function values in the presence of implicit equality constraints could also
be a target for improvement: when it works, it usually produces very good
points, however sometimes the extrapolation matrix is too ill-conditioned and
sometimes bad input points are missed by the outlier detection and force bad
extrapolated points.

It may also be worthwhile to explore the possibility of handling inequality
constraints (i.e. the bounds on the variables given by explicit equality con-
straints) more like the implicit equality constraints are handled, both in terms
of restricting the global search to the feasible area and by applying the �nal
extrapolation step.

Given the high sensitivity of the results to the local optimizer used for the
surrogate and density models, it would be worthwhile to try other local opti-
mization methods for the surrogate models. It might even be worth a try to
run a global optimization method on the global density models.

Finally, the current implementation is a prototype and does not always use
the most e�cient algorithms for its computations. To get it to scale to higher
dimensions, optimizing the implementation for speed may be worthwhile.
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